

Journal of Steroid Biochemistry & Molecular Biology 71 (1999) 63-70

The Journal of Steroid Biochemistry & Molecular Biology

www.elsevier.com/locate/jsbmb

Isolation and identification of 4,25-dihydroxyvitamin D_2 : a novel A-ring hydroxylated metabolite of vitamin D_2

D. Sunita Rao^a, Ramesh Dayal^b, Mei-Ling Siu-Caldera^a, Ronald L. Horst^c, Milan R. Uskokovic^d, Kou-Yi Tserng^b, G. Satyanarayana Reddy^{a,*}

^aDepartment of Pediatrics, Women and Infants' Hospital of Rhode Island, Brown University School of Medicine, 101 Dudley Street, Providence,

RI 02905, USA

^bCase Western Reserve University and Veterans Administration Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA

^cUS Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Metabolic Diseases and Immunology Research Unit, Ames, IA 50010, USA

^dHoffmann-La Roche, Inc., 340 Kingsland Street, Nutley, NJ 07110, USA

Received 1 March 1999; accepted 28 July 1999

Abstract

Vitamin D_2 is less toxic in rats when compared to vitamin D_3 . Our laboratory has been involved in research projects which were directed towards identifying the possible mechanisms responsible for the toxicity differences between vitamins D_2 and D_3 in rats. The present research project was designed to isolate and identify new metabolites of vitamin D_2 from serum of rats which were fed toxic doses of vitamin D_2 . Hypervitaminosis D_2 was induced in 30 rats by feeding each rat with 1000 nmol of vitamin $D_2/day \times 14$ days. The rats were sacrificed on the 15th day and obtained 180 ml of serum. The lipid extract of the serum was directly analyzed by a straight phase HPLC system. The various vitamin D_2 metabolites were monitored by their ultraviolet (UV) absorbance at 254 nm. One of the UV absorbing peaks did not comigrate with any of the known vitamin D_2 metabolites. This unknown metabolite peak was further purified by HPLC and was then subjected to UV absorption spectrophotometry and mass spectrometry. The structure assignment of the new metabolite was established to be 4,25-dihydroxyvitamin D_2 [4,25(OH)₂ D_2] by the techniques of UV absorption spectrophotometry and mass spectrometry and by the new metabolite's susceptibility to sodium metaperiodate oxidation. At present the biological activity of this unique 'A-ring' hydroxylated vitamin D_2 metabolite is not known. As this new metabolite is isolated from the serum of rats intoxicated with vitamin D_2 , we speculate that 4,25(OH)₂ D_2 may be playing an important role in the deactivation of vitamin D_2 . (1999 Elsevier Science Ltd. All rights reserved.

* Corresponding author. Tel.: +1-401-274-1122; fax: +1-401-453-7571.

1. Introduction

Vitamin D_3 (cholecalciferol) is the form of vitamin D that is synthesized by vertebrates, whereas vitamin D_2 (ergocalciferol) is the major naturally occurring form of the vitamin D in plants [1]. It has been known that there are differences between both forms of the vitamins in terms of their toxicity in mammalian species [2–7]. However, the reasons for the lesser toxicity of vitamin D_2 are not fully understood. The presence of a double bond at C-22 and an extra methyl group at C-24 pos-

Abbreviations: 1a(OH)D₂, 1a-hydroxyvitamin D₂; 2a(OH)D₂, 2ahydroxyvitamin D2; 24OHD2, 24-hydroxyvitamin D2; 25OHD2, 25hydroxyvitamin D₂; 1a,24(OH)₂D₂, 1a,24-dihydroxyvitamin D₂; 1\alpha,25(OH)2D2, 1\alpha,25-dihydroxyvitamin D2; 1\alpha,25(OH)2-3-epi-D3, 1α,25-dihydroxy-3-epi-vitamin D₃; 4,25(OH)₂D₂, 4,25-dihydroxyvitamin D₂; 2,25(OH)₂D₂, 2,25-dihydroxyvitamin D₂; 24(R),25(OH)₂D₂, 24(R),25-dihydroxyvitamin D2; 24,26(OH)2D2, 24,26-dihydroxyvita-25,28(OH)₂D₂, 25,28-dihydroxyvitamin D_2 : D₂; min 24(R),25,26(OH)₃D₂, 24(R),25,26-trihydroxyvitamin D₂; 24(S),25,28(OH)₃D₂, 24(S),25,28-trihydroxyvitamin D₂.

E-mail address: sreddy@wihri.org (G.S. Reddy).

^{0960-0760/99/\$ -} see front matter \odot 1999 Elsevier Science Ltd. All rights reserved. PII: S0960-0760(99)00125-9

Fig. 1. Chemical structures of vitamins D₃ and D₂.

ition, of vitamin D_2 side chain (Fig. 1) is responsible for the differences from the oxidative processes known to occur on the side chain of vitamin D_3 [5,8]. As a result, several differences in the pathways of side chain metabolism of these two vitamins are noted.

The known metabolites of vitamin D₂ in mammals receiving dietary vitamin D₂ are depicted in Fig. 2. Vitamin D₂ is metabolized in vivo to both 25-hydroxyvitamin D_2 (25OHD₂) and 24-hydroxyvitamin D_2 (24OHD₂), the major circulating metabolites of vitamin D_2 in rats and humans [9–12]. Both 25OHD₂ and 24OHD₂ are subsequently hydroxylated at C-1 position to form 1α ,25-dihydroxyvitamin D_2 $[1\alpha, 25(OH)_2D_2]$ 1α,24-dihydroxyvitamin and D_2 $[1\alpha, 24(OH)_{2}D_{2}]$ respectively [13,10]. Further $1\alpha, 25(OH)_2D_2$ is metabolized into $1\alpha, 24(R), 25$ -trihydroxyvitamin $[1\alpha, 24(R), 25(OH)_3D_2],$ D_2 $1\alpha, 24(R), 25, 26$ -tetrahydroxyvitamin D_2 $[1\alpha, 24(R), 25, 26(OH)_4D_2]$ and $1\alpha, 24(S), 25, 28$ -tetrahydroxyvitamin D_2 [1 α ,24(S),25,28(OH)_4D_2] respectively $1\alpha, 24(OH)_2D_2$ whereas, is converted into [8] $1\alpha, 24(S), 26$ -trihydroxyvitamin D_2 $[1\alpha, 24(S), 26(OH)_3D_2]$ [14]. It is important to understand the deactivation pathways of 25OHD₂ and $24OHD_2$ especially during hypervitaminosis D₂, a con-

dition not uncommon in clinical medicine, as vitamin D_2 is used routinely as a therapeutic agent. The inactivation of 24OHD₂ occurs through its conversion to 24(S),26-dihydroxyvitamin D₂ [24(S),26(OH)₂D₂] [15], and the inactivation of $250HD_2$ occurs through its further metabolism into 24(R),25-dihydroxyvitamin D₂ $[24(R), 25(OH)_2D_2]$ [9,16]. We demonstrated that $24(R), 25(OH)_2D_2$ is further metabolized into 24(S), 25, 28-trihydroxyvitamin D₂ [24(S), 25, 28(OH)₃D₂] 24(R),25,26-trihydroxyvitamin and D_2 $[24(R), 25, 26(OH)_3D_2]$ in the isolated perfused rat kidney and these two metabolites circulate in vitamin D₂intoxicated rat, suggesting that the formation of the two trihydroxylated metabolites of vitamin D_2 plays an important role in the deactivation of $250HD_2$ [11].

During the course of a pilot study designed to identify the circulating vitamin D₂ metabolites in a vitamin D₂-intoxicated rat using radiolabeled vitamin D₂ we found a major radiolabeled peak which did not comigrate with any of the known metabolites of vitamin D_2 on a straight phase HPLC system. The metabolite peak was more polar than the standard 24(R), $25(OH)_2D_2$ but less polar than the standard 1α ,25(OH)₂D₂. It migrated just prior to the standard 25,28-dihydroxyvitamin D₂ [25,28(OH)₂D₂] [11]. We designed the present study to isolate and identify this unknown circulating vitamin D₂ metabolite from the serum of vitamin D₂-intoxicated rats. We identified this new vitamin D₂ metabolite as 4,25-dihydroxyvitamin D_2 [4,25(OH)₂ D_2]. The isolation and identification of this new A-ring hydroxylated metabolite of vitamin D_2 is described in this paper.

2. Materials and methods

2.1. Vitamin D compounds

Vitamin D₂ was purchased from Sigma Chemical

Fig. 2. Pathways of vitamin D_2 metabolism through side chain modification.

Co. (St. Louis, MO). $25OHD_2$ was a gift from Dr. J.A. Campbell and Dr. J. Babcock (Upjohn, Kalamazoo, MI). 24(R), $25(OH)_2D_2$ was a gift from Dr. T. Kobayashi, Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Japan. All the various synthetic standards of vitamin D₂ metabolites used in this study were a gift from Hoffmann-La Roche, Nutley, NJ. Authentic $24OHD_2$ was isolated from the serum of vitamin D₂-intoxicated rats, and the structure of biologically produced $24OHD_2$ was verified by mass spectrometry as described before [9].

2.2. Solvents

All solvents were from Burdick and Jackson Laboratories, Muskegan, MI.

2.3. *High performance liquid chromatography (HPLC) and mass spectrometry*

Ultraviolet (UV) absorbance spectra were taken in 2-propanol with a Beckman DU 8 recording spectrophotometer. HPLC was performed with a Waters Model 600 equipped with a detector (Model 440) to monitor UV absorbing material at 254 nm (Waters Associates, Milford, MA). Mass spectra (70 eV) were obtained on a Hewlett-Packard 5985 B mass spectrometer. Sample of the metabolite (~0.5 μ g) was introduced into the ion source maintained at 200°C via a direct insertion probe.

2.4. Animals

Male Sprague–Dawley rats (about 300 g) were purchased from Zivic-Miller Laboratories, Inc., Allison Park, PA, and placed in individual hanging wire cages. The rats were fed a vitamin D-deficient diet containing adequate calcium and phosphorus [17] for the duration of the experiment.

2.5. Study of in vivo metabolites of vitamin D_2 in vitamin D_2 -intoxicated rats

This experiment was designed to study the circulating vitamin D_2 metabolites in hypervitaminosis. On the basis of the information given in a previous study by Shepard and DeLuca [18], we first estimated 1000 µg of vitamin D_2 as a safe total dose that can intoxicate a rat without causing death. After feeding vitamin D-deficient diet to the rats for 6 weeks, we noted that all the rats had undetectable circulating levels of 25OHD₃ and 25OHD₂, indicating that the rats were vitamin D-deficient. We then induced hypervitaminosis D_2 in these rats (n = 30) by administering 1000 nmol of vitamin D_2 (oral dose in 0.1 ml of Wesson oil) each day for a period of 14 days. At the end of the 15th

Fig. 3. HPLC profile of the various metabolites of vitamin D_2 obtained from the serum of 30 vitamin D_2 -intoxicated rats. Each rat was given 1000 nmol of vitamin D_2/day for a period of 14 days. The lipid extract of the serum sample containing the various vitamin D_2 metabolites was analyzed by HPLC under the following chromatographic conditions: HPLC was performed on a Zorbax-SIL column (25 cm \times 4.6 mm) eluted with hexane–2-propanol (97.5:2.5) at a flow rate of 2 ml/min. The various metabolites of vitamin D_2 were identified by monitoring their UV absorbance at 254 nm. The peaks eluting within the first 40 ml elution volume were monitored at UV maximum 0.05. Peak X₁, X₂, X₃ and X₄ represent unknown peaks. Peaks X₁, X₂ and X₃ were not identified in this study.

day, for hypervitaminosis D_2 , the serum calcium concentrations in rats were determined. As expected the rats were hypercalcemic, the serum calcium levels of the rats were found to be 13.1 ± 0.5 (mean \pm SE), when compared to control rats, 10.3 ± 0.1 . Twenty four hours following the final dose, all the rats were sacrificed by exsanguination and obtained 180 ml of serum. The various metabolites of vitamin D_2 in the lipid extract of the serum samples were analyzed and quantified by HPLC.

2.6. Lipid extraction

Lipid extraction of the serum sample was performed according to the procedure of Bligh and Dyer [19], except that methylene chloride was substituted for chloroform.

2.7. Isolation and purification of the various metabolites of vitamin D_2 from serum samples for their structure identification

The lipid extract obtained from 180 ml of serum, was divided into 9 portions. Each lipid portion was subjected directly to HPLC under the same chromatographic conditions described in the legend for Fig. 3.

Fig. 4. HPLC profile of the unknown metabolite (peak X_4) obtained from the serum of vitamin D₂-intoxicated rats re-analyzed using hexane-methylene chloride mixture (99:1) as the solvent system (panel A). HPLC was performed under the same chromatographic conditions described in the legend for Fig. 2. Panel B: UV absorption spectrum of the unknown metabolite of vitamin D₂ exhibiting a UV maximum at 265 nm and a UV minimum at 228 nm, a characteristic for D vitamins.

We traced the various metabolites of vitamin D_2 by monitoring their UV absorbance at 254 nm.

We have found a peak (represented as X_4) in the region corresponding to synthetic standard $25,28(OH)_2D_2$ in the first HPLC run (Fig. 3). Therefore, we collected the fractions eluting between 34 and 37 min during the first HPLC run and subjected to a second HPLC system with the same Zorbax-SIL column (25 cm \times 4.6 mm) eluted with hexane-2-propanol mixture (98.25:1.75) at a flow rate of 2 ml/min. Further, the UV peak of the unknown metabolite of vitamin D_2 (peak X_4) obtained from the second HPLC run was subjected to a third HPLC run using hexane-methylene chloride mixture (99:1) as the solvent system. Finally, the UV peak of the unknown vitamin D_2 metabolite (peak X_4) obtained from the third HPLC run (Fig. 4, panel A) was further purified with a fourth HPLC system eluted with hexane-2-propanol (90:10). At this point, the purity of the UV peak was tested by obtaining the UV spectra. The UV absorbing material from the unknown peak, exhibited a UV spectrum that is characteristic for all D vitamins (Fig. 4, panel B). The vitamin D_2 metabolite obtained from peak X₄ was then subjected to mass spectrometry and sodium metaperiodate (NaIO₄) oxidation in order to identify its chemical structure.

2.8. $NaIO_4$ oxidation of the new metabolite of vitamin D_2

The susceptibility of the new metabolite of vitamin

 D_2 to NaIO₄ oxidation was tested in order to locate the exact position of the hydroxyl groups in the new metabolite. It is well known that NaIO₄ cleaves the bond between two carbons when each carbon bears a hydroxyl group or one carbon bears a hydroxyl group and the other bears a keto group. A total of 0.5 µg of new metabolite or 1α ,25(OH)₂D₂ was dissolved in 15 µl of methanol and was allowed to react with 10 µl of 5% aqueous NaIO₄ for 5 min. After 5 min at 25°C, the reaction products were separately dried under nitrogen gas, and were subjected to HPLC under the same chromatographic conditions described in the legend for Fig. 6.

3. Results

3.1. Metabolites of vitamin D_2 isolated from the serum of vitamin D_2 -intoxicated rats

Fig. 3 shows the HPLC profile of the parent substrate and the various metabolites produced in vitamin D₂-intoxicated rats. From Fig. 3 it becomes obvious that, vitamin D_2 is metabolized into several metabolites as represented by the UV absorbing peaks. The identities of the known metabolites of vitamin D_2 i.e. 24OHD₂, 25OHD₂ and 24(R),25(OH)₂D₂ were confirmed by their comigration with the corresponding authentic cold standards on HPLC. In addition to the aforementioned metabolites, we have found four unknown peaks, represented as X1, X2, X3 and X4 (Fig. 3). Among these four peaks, peak X₄ was found in the region corresponding to the elution volume of synthetic standard 25,28(OH)₂D₂ during the first HPLC run. We were interested in identifying this unkown vitamin D metabolite peak. The amounts of 24OHD₂, 25OHD₂, 24(R),25(OH)₂D₂ and peak X_4 in the serum of vitamin D₂-intoxicated rats are in the ratio of about 5:15:3:1. We further purified peak X_4 using three different HPLC systems as described in Materials and methods. At this point, the purity of peak X₄ was adequate for its structure identification process.

3.2. Structure identification of the new metabolite of vitamin D_2 (peak X_4)

The correct structure assignment to the unknown metabolite of vitamin D_2 was achieved by the techniques of UV absorption spectrophotometry and mass spectrometry.

3.3. UV and mass spectral findings of the new metabolite and its NaIO₄ cleavage product

The new metabolite purified from the serum of vita-

Fig. 5. Mass spectrum and proposed structure of the new metabolite of vitamin D_2 , 4,25(OH)₂ D_2 .

min D_2 -intoxicated rats exhibited UV spectra with an absorbance maximum at 265 nm and an absorbance minimum at 228 nm (Fig. 4, panel B). This finding indicated that the new metabolite contained an intact 5,6-*cis*-triene chromophore, characteristic of the D vitamins.

The mass spectrum of the new metabolite shown in Fig. 5 exhibited a molecular ion (M^+) at m/z 428, which indicates that two hydroxyl groups are added to the parent vitamin D₂. The prominent mass fragments at m/z 152 and 134, similar to that observed in all 1-hydroxylated vitamin D₂ and D₃ metabolites suggests that one of the hydroxyl group is located on the A-ring. The mass fragments at m/z 269 and 251, which are formed from the cleavage of bond between C-17 and C-20 with the subsequent losses of water molecules, are consistent with the location of the second hydroxyl group on the side chain. The fragment at m/z 59, which is formed from the cleavage of bond between C-24 and C-25, is typical of vitamin D compounds with a 25-hydroxyl group.

Even though the mass spectrum of this metabolite is similar to that derived from 1α ,25(OH)₂D₂ [13], it is less polar when compared to synthetic standard 1α ,25(OH)₂D₂ (Fig. 6) on a straight phase HPLC system. This finding indicates that the new vitamin D₂ metabolite is not hydroxylated at C-1 position, and leaves only possibility of hydroxylation at either C-2 or C-4. Further, this conclusion of a vicinal-diol structure was confirmed by the sensitivity of the metabolite to NaIO₄ oxidation (Fig. 6, panel C). The new metabolite was highly susceptible to NaIO₄ oxidation, and we noticed that during an incubation of 5 min this metabolite was almost completely converted to its corresponding periodate cleavage product (Fig. 6 panels B and C). As expected 1α ,25(OH)₂D₂ was not susceptible to NaIO₄ oxidation (Fig. 6, panel A). The purified cleavage product was then collected and subjected to UV spectrophotometry and mass spectrometry for structure identification.

The first clue for assignment of the metabolite structure as 4,25(OH)₂D₂ instead of 2,25-dihydroxyvitamin D_2 [2,25(OH)₂ D_2] is obtained by the UV absorption spectrum of the periodate cleavage product of the metabolite. As shown in Fig. 6 (panel D), the UV absorption maximum of the cleavage product is shifted to 300 nm from the usual 265 nm, typical of a *cis*-triene structure of a vitamin D compound. This shift in absorption maximum indicates that an additional conjugation of double bond has been created by the reaction. Only the 4-hydroxyl group substitution in the Aring would produce this additional double bond conjugation upon periodate cleavage. Both aldehyde groups derived from the cleavage of a 2-hydroxyl metabolite are not conjugated to the original triene structure. Fieser's rule on enone absorption [20] predicts that the addition of such an additional conjugated double bond would increase the absorption maximum of a cis-triene to about 290 to 300 nm.

The second clue for the assignment of the metabolite structure as $4,25(OH)_2D_2$ is obtained by the mass spectrum of the NaIO₄ cleavage product. The mass spec-

Fig. 6. HPLC analysis of the reaction product obtained by treating 0.5 µg of the new metabolite of vitamin D₂ or 1α ,25(OH)₂D₂ with NaIO₄ for 5 min: new metabolite (panel C); 1α ,25(OH)₂D₂ (panel A); new metabolite untreated with NaIO₄ (panel B). HPLC was performed on a Zorbax-SIL column (25 cm × 4.6 mm). The column was eluted with hexane–2-propanol (95:5) at a flow rate of 2 ml/min to elute the periodate cleavage product of the new metabolite and 1α ,25(OH)₂D₂ and the untreated parent metabolites. The UV absorption spectrum of the NaIO₄ cleavage product of the new metabolite is shown in panel D.

trum of the NaIO₄ cleavage product (Fig. 7) exhibited a molecular ion at m/z 426, and is consistent with the cleavage of a cyclic vicinal diol to form a dialdehyde. Furthermore, the lack of the characteristic fragments at m/z 134 and 152 as in the precursor molecule confirmed that the A-ring structure has been altered. Either a 2-hydroxyl or a 4-hydroxyl group substitution would produce a dialdehyde consistent with these mass fragmentation and chemical properties. However, a significant mass fragment occurred at m/z 383 indicating that the precursor is most likely a 4-hydroxyl substitution. This mass fragment is formed from the loss of 43 neutral fragment from the molecular ion, m/z426. This type of fragmentation is consistent with a β cleavage in aldehyde compounds with the loss of CH₂CHO. A β -cleavage is more likely to occur in dia-Idehyde structure formed from 4-hydroxyl metabolite than that from the corresponding 2-hydroxyl metabolite. For the latter compound, the β -cleavage to lose 43 would involve the cleavage of a vinylic bond (a single bond immediately connected to a double bond),

which is energetically unfavored. In addition, the mass fragment at m/z 368 is derived from the loss of mass fragment 58 from the molecular ion. This type of fragmentation is derived from the McLafferty Rearrangement involving a 25-hydroxyl group and the 22–23 double bond in vitamin D₂. This evidence further supports that the side chain hydroxyl group is at the C-25 position.

4. Discussion

We report the isolation and identification of $4,25(OH)_2D_2$ a novel A-ring hydroxylated metabolite of vitamin D₂ in vitamin D₂-intoxicated rats. Our finding of A-ring hydroxylation of 250HD₂ is not surprising. In a previous study, Thierry-Palmer et al. [21] demonstrated for the first time the possibility of Aring hydroxylation of 25OHD₃ by rat renal microsomes in vitro. This finding was based on the mass spectrometric analysis of the metabolite and its sensitivity to NaIO₄, The mass spectrum of the metabolite indicated that the metabolite is a dihydroxylated metabolite with one hydroxyl group at C-25 and the other in the A-ring. The sensitivity of the metabolite to NaIO₄ indicated that the hydroxyl group in the Aring is vicinal to the 3-hydroxyl group. These findings together suggested that the metabolite has to be either $2,25(OH)_2D_3$ or $4,25(OH)_2D_3$. Unlike the study of Thierry-Palmer et al. [21], we were able to obtain both UV as well as mass spectra of the NaIO₄ cleavage product of the unknown metabolite. This allowed us to locate the exact position of the hydroxyl group in the A-ring of the metabolite and to assign a definite structure to the metabolite. Furthermore, our study also provided the new information to indicate that the Aring hydroxylated metabolite is one of the major circulating metabolites in vitamin D₂-intoxicated rats.

The 'A-ring' hydroxylations are known to have a profound influence on the biological activity of the vitamin D compounds. For example, the binding affinity of synthetic 2,25(OH)₂D₃ to chick intestinal cytosolic receptor was found to be less than 1/1000 when compared to $1\alpha, 25(OH)_2D_3$. The ability of $2,25(OH)_2D_3$ to induce HL-60 cell differentiation (ATCC cells) was also reduced in comparison to 1α ,25(OH)₂D₃ [22]. Further, synthetic 2α -hydroxyvitamin $D_3 [2\alpha(OH)D_3]$ did not exhibit any significant biological activity as determined by its ability to induce intestinal calcium transport and bone calcium resorption in vivo in rats when compared to 1\alpha-hydroxyvitamin D_3 [1 α (OH) D_3]. The biological activity of $2\alpha(OH)D_3$ was estimated to be less than 1/1000 times that of $1\alpha(OH)D_3$ [23]. It was also shown that vitamin D_3 itself was several times more potent than $2\alpha(OH)D_3$ in inducing intestinal calcium transport ac-

Fig. 7. Mass spectrum and proposed structure of the periodate cleavage product of the new metabolite of vitamin D₂.

tivity [23]. Thus, all these above findings suggest that the 2α -hydroxyl function leads to inactivation of the vitamin D compounds. At present no information is available with regard to the biological activity of vitamin D compounds with a hydroxyl group at C-4 position.

Up to now, it is known that the side chain metabolism through C-24 oxidation pathway is the only inactivation pathway for vitamin D₂ [24]. But now the isolation and identification of 4,25(OH)₂D₂ as a major circulating metabolite in rats intoxicated with vitamin D₂ suggests that 'A-ring' hydroxylation may become an alternative pathway for the deactivation of vitamin D_2 . Further, when we compared the amounts of the major side chain dihydroxylated metabolite of vitamin D_2 i.e. 24(R),25(OH)₂ D_2 with the A-ring hydroxylated metabolite in the circulation of vitamin D₂-intoxicated rats, we found that $4,25(OH)_2D_2$ was about 1/3 the concentration of 24(R),25(OH)₂D₂ suggesting that 'Aring' modification also appears to be a significant metabolic pathway for vitamin D₂. However, it remains to be determined whether C-4 hydroxylation of vitamin D₂ occurs directly or prior C-25 hydroxylation is essential for C-4 hydroxylation to occur. Also it will be of interest to determine whether C-4 hydroxylation of 1α , 25(OH)₂D₂ occurs.

In conclusion, we have identified for the first time $4,25(OH)_2D_2$, a novel 'A-ring' hydroxylated vitamin D_2 metabolite, as one of the major circulating metabolite in vitamin D_2 -intoxicated rats. As this new

metabolite is isolated from the serum of rats intoxicated with vitamin D_2 , we speculate that 'A-ring' hydroxylation may be playing an important role in the deactivation of vitamin D_2 compounds and protect the animal from the toxic effects of vitamin D_2 .

Acknowledgements

We gratefully acknowledge Dr. M.F. Holick and Dr. R. Ray (Boston University School of Medicine, Boston, MA) for many helpful discussions. This work was supported in part by a grant (DK-30138) from the National Institutes of Health to G.S.R.

References

- R.L. Horst, T.A. Reinhardt, Vitamin D metabolism, in: D. Feldman, F.H. Glorieux, J.W. Pike (Eds.), Vitamin D, Academic Press, New York, 1997, pp. 13–31.
- [2] R.D. Hunt, F.G. Garcia, R.J. Walsh, A comparison of the toxicity of ergocalciferol and cholecalciferol in Rhesus Monkeys (*Macaca mulatta*), J. Nutr. 102 (1972) 975–986.
- [3] D.D. Harrington, E.H. Page, Acute vitamin D₃ toxicosis in horses: case reports and experimental studies of the comparative toxicity of vitamin D₂ and vitamin D₃, J. Am. Vet. Med. Assoc 182 (1983) 1358–1369.
- [4] E.M. Hodson, R.A. Evans, C.R. Dunston, E. Hills, S.Y.P. Wong, A.R. Rosemberg, L.P. Roy, Treatment of childhood renal osteodystrophy with calcitriol or ergocalciferol, Clin. Nephrol. 24 (1985) 192–200.

- [5] R.L. Horst, J.L. Napoli, E.T. Littledike, Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick, Biochem. J. 204 (1982) 185–189.
- [6] G. Sjoden, C. Smith, U. Lingren, H.F. DeLuca, 1 alpha-hydroxyvitamin D_2 is less toxic than 1 alpha-hydroxyvitamin D_3 in the rat, Proc. Soc. Exp. Biol. Med. 178 (1985) 432–436.
- [7] L. Tjellesen, A. Gotfredsen, C. Christiansen, Different actions of vitamin D_2 and D_3 on bone metabolism in patients treated with phenobarbitone/phenytoin, Calcif. Tissue Int. 37 (3) (1985) 218–222.
- [8] G.S. Reddy, K.-Y. Tserng, Isolation and identification of 1,24,25-trihydroxyvitamin D₂, 1,24,25,28-tetrahydroxyvitamin D₂ and 1,24,25,26-tetrahydroxyvitamin D₂: new metabolites of 1,25-dihydroxyvitamin D₂ produced in rat kidney, Biochemistry 25 (1986) 5328–5336.
- [9] G. Jones, H.K. Schnoes, L. Levan, H.F. DeLuca, Isolation and identification of 24-hydroxyvitamin D_2 and 24,25-dihydroxyvitamin D_2 , Arch. Biochem. Biophys. 202 (1980) 450– 457.
- [10] R.L. Horst, N.J. Koszewski, T.A. Reinhardt, 1α-hydroxylation of 24-hydroxyvitamin D₂ represents a minor physiological pathway for the activation of vitamin D₂ in mammals, Biochemistry 29 (1990) 578–582.
- [11] G.S. Reddy, K-Y. Tserng, 24,25,28-Trihydroxyvitamin D_2 and 24,25,26-trihydroxyvitamin D_2 : novel metabolites of vitamin D_2 , Biochemistry 29 (1990) 943–949.
- [12] E.B. Mawer, G. Jones, M. Davies, P.E. Still, V. Byford, N.J. Schroeder, H.L.J. Makin, C.W. Bishop, J.C. Knutson, Unique 24-hydroxylated metabolites represent a significant pathway of metabolism of vitamin D₂ in humans: 24-hydroxyvitamin D₂ and 1,24-dihydroxyvitamin D₂ detectable in human serum, J. Clin. Endocrinol. Metab. 83 (6) (1990) 2156–2166.
- [13] G. Jones, H.K. Schnoes, H.F. DeLuca, Isolation and identification of 1,25-dihydroxyvitamin D₂, Biochemistry 14 (6) (1975) 1250–1256.
- [14] G. Jones, V. Byford, H.L. Makin, R. Kremer, R.H. Rice, L.A. deGraffenried, J.C. Knutson, C.W. Bishop, Antiproliferative

activity and target cell catabolism of the vitamin D analog, lalpha,24(S)-dihydroxyvitamin D_2 in normal and immortalized in human epidermal cells, Biochem. Pharmacol. 52 (1) (1996) 133–140.

- [15] N.J. Koszewski, T.A. Reinhardt, J.L. Napoli, D.C. Beitz, R.L. Horst, 24,26-Dihydroxyvitamin D₂: a unique physiological metabolite of vitamin D₂, Biochemistry 27 (1988) 5785–5790.
- [16] G. Jones, A. Rosenthal, D. Segev, Y. Mazur, F. Frolow, Y. Halfon, D. Rabinovich, Z. Shakked, Isolation and identification of 24,25-dihydroxyvitamin D₂ using the perfused rat kidney, Biochemistry 18 (6) (1979) 1094–1101.
- [17] T. Suda, H.F. DeLuca, Y. Tanaka, Biological activity of 25hydroxyergocalciferol in rats, J. Nutr. 100 (1970) 1049–1052.
- [18] R.M. Shepard, H.F. DeLuca, Plasma concentrations of vitamin D₃ and its metabolites in the rat as influenced by vitamin D₃ or 25-hydroxyvitamin D₃ intakes, Arch. Biochem. Biophys. 202 (1) (1980) 43–53.
- [19] E.G. Bligh, W.G. Dyer, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol. 37 (1959) 911– 917.
- [20] R.M. Silverstein, G.C. Bassler, Spectrometric Identification of Organic Compounds, 2nd ed., Wiley, New York, 1967, 160 pp.
- [21] M. Thierry-Palmer, T.K. Gray, J.L. Napoli, Ring hydroxylation of 25-hydroxycholecalciferol by rat renal microsomes, J. Steroid Biochem. 29 (6) (1988) 623–628.
- [22] B. Schonecker, R. Prousa, M. Reichenbacker, S. Gliesing, H. Kosan, P. Droescher, U. Hausschild, R. Thieroff-Ekerdt, Synthesis of 3β-acetoxy-1β,2β-epoxy-25-hydroxy-cholesta-5,7-diene and 2β,25-dihydroxyvitamin D₃, BioMed. Chem. Lett. 3 (9) (1988) 1849–1854.
- [23] C. Kaneko, S. Yamada, A. Sugimoto, A. Ishikawa, T. Suda, Synthesis and biological activity of 2 alpha-hydroxyvitamin D₃, J. Chem. Soc. Perkin Trans. I 12 (1975) 1104–1107.
- [24] R.L. Horst, T.A. Reinhardt, C.F. Ramberg, N.J. Koszewski, J.L. Napoli, 24-hydroxylation of 1α,25-dihydroxyergocalciferol. An unambiguous deactivation process, J. Biol. Chem. 261 (20) (1986) 9250–9256.